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Abstract The bound magnetic polaron (BMP) in a cubic Fe-based diluted magnetic 
semiconductor is considered. It is shown that the en% spectrum of the BMP is identical 
to that of Lhe three-dimensional harmonic oscillator with a rpin-arbital coupling. The polaron 
effect manifests itself in the existence of a splitting in the energies of the excited stares of the 
polaron. It is shown also that the g-factor of the BMP is smaller than the 8-factor of B free 
electron calculated in the molecular-field approumation. 

1. Introdnetion 

The bound magnetic polaron (BMP) is one of the most interesting physical phenomena arising 
in diluted magnetic (also referred to as semimagnetic) semiconductors (DMSS) due to the 
strong exchange interaction of a carrier with magnetic ions. In the family of Mn-based DMSS 
the polaron effect for electrons bound on shallow donors has now been thoroughly examined 
both theoretically and experimentally (see, for a review, [ I ] ) .  In particular, it is found that 
there exists a zero-magnetic-field spin splitting of the electron level in a non-vanishing 
random exchange field of all the ions in the electronic orbit [Z]. 

There is now a growing interest in the study of physical properties of DMSS based on the 
other transition-metal ions. The specific feature of wide-gap Febased A:i,Fe,Bvl DMSS 
lies in the fact that the 3d6 multiplet of the Fe2+ ion (total orbital momentum L = 2 and 
spin S = 2) is split in the host crystal by both the crystal field and spin-xbital coupling, 
giving a non-degenerate ground state with (S) = (L)  = 0; an applied magnetic field mixes 
this non-magnetic ground state and the excited states of the ion, so that Fe ions exhibit the 
Van Vleck paramagnetism [ 3 ] .  Correspondingly, the ground state of the system consisting 
of a donor-bound electron and a number of Fezt ions within its orbit is doubly degenerate, 
and no spin splitting exists in the absence of an applied magnetic field (this follows from 
the Kramers theorem) [4]. In this case the exchange interaction between the electron spin 
and those of the ions results only in a decrease of the energy of the system. However, it 
was shown in [5 ]  and [6]  that if the spin splitting of the BMP ground state in an applied 
magnetic field becomes close to an excitation energy of the Fe ion, the exchange interaction 
manifests itself in the effect of anticrossing of the Raman lines, which correspond to the 
electron spin-flip and excitation of an Fe ion. Note that there is an analogy between the Van 
Vleck BMP and the usual concept of the polaron arising due to the coupling between the 
electron and optical phonons: in both cases the electron interacts with elemen- excitations 
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of the crystal, which have approximately constant energy of excitation. The difference is in 
the form of the interaction, which results in some specific features of the Van Vleck BMP. 
The possibility of autolocalization of a free canier in the Van Vleck DMS was considered 
in 171 (see also [SI). 

In this paper we consider the Van Vleck BMP in a DMS with cubic symmetry. Thc 
case of a cubic crystal is of interest, in particular, due to the recent discovery of persistent 
shallow-donor electrons, arising in CdTe-based alloys after illumination [9], Our main goal 
is to show that a very simple description of the polaron state exists, and the energy spectrum 
of the Van Vleck BMP is identical to the energy spectrum of a three-dimensional harmonic 
oscillator with spin-orbital coupling. This approach gives the possibility of extending the 
analysis of [6] and calculating the BMP wave functions and the energy spectrum in the case 
of a polaron with an arbitrary coupling. We will also find the effective g-factor of the BMP in 
the low-magnetic-field region, where the Zeeman terms can be considered as a perturbation. 

2. The Van Vleck BMP in the zero-magnetic-field case 

We consider a localized electron in the state with wave function @(r)  and Fe ions in the 
electronic orbit. In the absence of an applied magnetic field the Hamiltoninn of the system 
reads [6] 

Ho = H, + ;U . M M = c,S, 
" " 

where H, and S, are the Hamiltonian and the spin of the nth Fe2+ ion, U,, uy, and 0; are 
the Pauli matrices for the electron spin, and 

C" = -Oll@.(RJZ (2 ) 

is the exchange-interaction energy of the electron spin with the nth magnetic ion (Rn is the 
position of this ion and a is an exchange constant). The spectrum of Fezc in a cubic crystal 
was calculated in [lo]. The lowest-lying states of the Fe ion are a singlet ground state A, 
(in the following we put its energy equal to zero) and a triplet TI with energy EO. To a 
very good approximation the spin operator S, connects the ground state In, 0) of the nth 
ion only with the states belonging to the triplet TI ,  and it is convenient to write the triplet 
state as 

(The normalization factor I/./? can be found simply noting that xi  I(n,ilS~ln,O)l* = 
S(S + 1) = 6.) The wave functions Si ln ,  i) consist not only of the ground and lowest- 
lying triplet states, but also of some other, higher-lying states of the ion. However, in 
the following we shall assume the interaction energies c, to be much smaller than energy 
spacing EO,  

c, <<EO. (4) 

Then, in the polaron ground state the admixture of triplet states is small for each Fe2+ 
ion (of the order of cn/&0). the admixture of highest-lying states (which is of the order of 
(cn/&0)') can be neglected, and it is enough to consider only the ground and first excited 
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triplet states for each ion. The inequality (4) holds very well, e.g., for a shallow-donor 
electron. 

Even in the case (4), when the exchange interaction of an electron with one ion is 
small, the polaron effect can be large because the electron interacts with a great number of 
magnetic ions. Indeed, in the second order of the perturbation theory with respect to the 
last term of the Hamiltonian (1) the polaron energy can be found using (3) to be (cf [5]) 

So, the value of the polaron effect is governed by the parameter q, which is of the order 
of ( C J E ~ ) ~ N .  where N >> 1 is the typical number of magnetic ions in the electronic orbit. 
This parameter increases linearly with the concentration of magnetic ions x and may be 
large. Our aim is to consider the Van Vleck BMP for arbitrary values of coupling constant 
q without using any kind of perturbation theory. 

The specific feature of the polaron Hamiltonian (1) lies in the fact that the interaction 
term is just a product of the electron spin operator U and an additive operator acting 
on the states of all the magnetic ions (see (I)). This results, as was pointed out in  
[6], in a great reduction of the possible set of N-ion wave functions that can enter the 
expression for the BMP wave function. For example, among a great number of possible 
wave functions corresponding to the state of the system with an ion excited to the triplet 
state, only combinations 

can appear (Ivac) denotes the state in which all the ions are in their ground states). In the 
general case we consider the states of the magnetic ion subsystem with k ,  I ,  m ions in I x ) ,  
l y ) ,  and lz) states respectively: 

where the sum is taken over all sets {nl ,  nz, . . . , nk+r+m} with n1 # nz # . . . # nk+l+m. 
In the case when only a small number of magnetic ions is excited, k + I + m << N ,  the 
normalization coefficient reads 

~ ( k ,  1, m)  = v'EiZ/(2~O~ii)~+'+~. (8) 

The matrix elements of collective operator M entering the interaction term of Hamiltonian 
(1) in the basis of wave functions (7) are 
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but has the order of magnitude of (&&)-I E,, 2, i.e. ~ o ( q / N ) ' / ~ .  Neglecting such small 
terms we anive at the conclusion that there is a direct correspondence. between the basis 
(7) and that of eigenfunctions of a threedimensional harmonic oscillator (namely, the state 
Ik, I ,  m) corresponds to the state of an oscillator writh k, I ,  and m of x - ,  y - ,  and z-phonons, 
respectively), and the operator M corresponds to 2&oq1/'(a + a+), where a+ and a are the 
creation and annihilation operators for this oscillator. Taking into account that the state with 
k + I + m excited ions has the energy (k + I + m)&o. we can rewrite the polaron Hamiltonian 
(1) as 

Ho = &@[cl+ . a + fit. (a + a+)]. (10) 

In such a way the many-particle Hamiltonian of the BMP is reduced to the Hamiltonian 
of the 3~ harmonic oscillator with spin-orbital coupling proportional to c . p ,  where p is 
the momentum operator. The inequality (4) allowed us to linearize the response of the 
subsystem of magnetic ions and describe the action of a great number of magnetic ions on 
the electron spin with field operators a+ and a. 

The problem of diagonalization of the Hamiltonian (IO), as well as of the initial 
Hamiltonian (I), is connected with the non-commutation of the Pauli matrices, but now 
it  is possible to use the methods developed for the harmonic oscillator and the properties 
of its wave functions. The solution for arbitrary values of coupling constant q is given in 
the appendix. The polaron Hamiltonian commutes with operator 

.7 = 4c + i ( a  x a+) (11) 

which has the meaning of the operator of the total angular momentum for the 3D oscillator 
(10),andthepolaronstatescanbeclassifiedbyvaluesofJ2= j ( j + I ) ,  where j = i, I,..., 
and Jz = - j ,  , . . , j .  According to the appendix, the energy spectrum of the polaron is given 
by the solutions of the equation 

- E/&@ + j - 4 = Alq/IBI - A2q/[B2 - A Y I / ( B B  - . . .)I1 (12) 

where 

(13) 
E k if k is even 

k + 2 j + 1  i f k i s o d d  EO 
B , = - - + k + j - L  A , = (  2 

Along with j we will also characterize the polaron states by the principal quantum 
number n = 1 ,2 , .  .., in such a way as Etj  < E2j < ._.. The ground state of the 
polaron is that with n = 1, j = 4. The polaron ground-state energy Ep"l = El.,j=1/2 
decreases monotonically with increasing coupling constant and has the following asymptotic 
behaviour: 

Epol = -3VEo (II << 1) Epo~ = 4 1  + ?)EO (tl >> 1). (14) 

For the intermediate values of q the ground-state energy and the energies of a few lowest- 
lying excited states were found from equation (12) numerically. The excitation energies 
of the polaron AE, , j  = En.j - El,l/z as functions of the coupling constant are shown in 
figure 1. 

At the end of this section we will discuss the physical meaning of the quantum number 
j of the BMP states. It follows from the commutational relations for the spin operator of 
the Fe ion and (3) that the matrix elements of S. between the TI states are 

{n,ilSiln,k) = l i e  2 (Jk  (15) 
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Figure 1. The dependences of the excitation energies 
of the BMP AEn,j = E.,j - Et,iy, (in units of EO) on 
coupling constant q .  The quantum numbers of excited 
states of the polamn are shown in parentheses: (n. j ) .  

where i, j ,  k = x ,  y ,  z, and q j k  is the totally antisymmetric tensor of the third rank. (15) 
implies that the mahices (3 x 3) of the ion spin operator between functions 2-1/21n, x -iy), 
In, z ) ,  2-1/21n, x + iy) differ from those of angular momentum I only by a factor of In 
our approximation (4). when the interaction of the electron spin with each ion is taken tnto 
account only in the first order, one can consider the collective states (7) with one excited ion 
( I l , O ,  0). IO, 1,0), and 10,0, 1)) as the states with angular momentum 1 = 1; the states with 
two excited ions as superpositions of states with 1 = 0, 1, and 2; etc. This is the physical 
meaning of the orbital momentum i(a x a+) of the 3D oscillator (10) and the reason for the 
existence of the quantum number j = 1 rt for the BMP. Note also that the existence of 
splitting in the energies of the excited states of the polaron is in agreement with the energy 
spectrum of the system consisting of one electron and one Fe ion, which was calculated in 
[61. 

Figure 2. The ratio of the BMP g-factor g, to the g- 
factor of a free elemn g* as a function of coupling 
constant 7. 

2: 

3. The g-factor of the polaron 

In an applied magnetic field it is necessary to add the term 

H' = + sn (16) 

to Hamiltonian (1) (ge and gFe are the band g-factor of an electron and that of an Fe ion, 
respectively). In the following we will neglect the interaction of the orbital momentum of 
the Fe ion with the magnetic field because the crystal-field splitting of the Fe levels is much 
greaier than the spin-orbital one [61. In the collective basis (7) the Hamiltonian H' takes 
the form 

n 

H' = i g , F B  . U + $igFepB . (a  x a+) + t o b .  (a + a+) (17) 
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The second term in (17) arises due to relation (15). Performing the unitary transformation 

(19) eb+z+-a)(~o + Hf)eb+z-o+t 

with b given by (18) we can write the BMP Hamiltonian in a magnetic field as 

where 

is the g-factor of the free electron in a cubic Fe-based DMS (see, e.g., [ l  11). In (21) we have 
used the definition (2) and replaced the summation over magnetic ions by the integration 
over their positions. NO is the number of cations per unit volume. 

Hamiltonian (20) describes properly the energy spectrum of the BMP in the region of 
moderate magnetic fields, gp&B << EO. where magnetic-field-induced mixing of the states 
of the Fe ion is small. For a typical value of EO E 2 meV it corresponds to B c 5 T. The 
third term of (20) describes the splitting linear in B of the excited triplet states of the ions, 
and the last term, which is proportional to the number of ions in the electronic orbit and 
does not depend on the exchange constant 01, gives the decrease in energy of the system due 
to the Van Vleck paramagnetism. Due to the strong enhancement of the electron g-factor 
g* the second term of (20) becomes comparable to EO in the region of moderate magnetic 
fields. The anticrossing of the split-up ground level of the polaron with split-down excited 
ones in the region g*pB N EO 151 can be easily considered on the basis of Hamiltonian 
(20) for the case of weak coupling, when the second term of HO (10) can be regarded as 
a perturbation. It should be noted also that the present theory cannot be directly extended 
to the region of high magnetic fields, g k p B  > E O ,  because the relations (3) for the ground 
and lowest-lying excited states of the Fe ion do not hold in this case. 

In this section we will pay attention to the region of small magnetic fields, where 
g * p B  << EO and the splitting of the ground state of the BMP can be written as gppB.  
The g-factor of the BMP gp, as well as the g-factor of a free carrier in  a DMS, is strongly 
enhanced due to the exchange interaction with magnetic impurities: g,. g* >> 1. However, 
due to the fact that the polaron ground state is not a state with well defined projection of the 
electron spin (see (A7)) the polaron g-factor turns out to be smaller than the g-factor of a 
free electron in the molecular-field approximation (21). The higher the coupling constant is, 
the smaller gp is. The dependence gp(q). which was found by consideration of the second 
term in (20) as a perturbation and with use of (A7) for the wave function of the ground 
state of the polaron, is shown in figure 2 (the third term in (ZO), which gives the correction 
to g, of the order of gfe N 2 < g', was neglected in this calculation). The polaron g-factor 
decreases rapidly with the coupling constant (for the weak-coupling case g, cz (1 - 4q)g*) 
and tends to the limit ig*  at q >> I .  

4. Numerical estimations and conclusion 

It was shown in sections 2 and 3 that, in the case when the exchange interaction of the 
electron spin with one Fe ion is small (41, all physical properties of the BMP are determined 
by one parameter, the coupling constant q given by (5). Substitution of (2) into (5) and 
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replacement of the summation over n by integration over the positions of magnetic ions 
gives 

We perform the numerical estimations for Znl-,Fe,Se. Because the Fe-Fe exchange 
interaction has not been taken into account and the present theory is valid only for small 
enough x ,  we will put in the following x = 0.05. For the H-like wave function and 
using the values Noor = 250 meV, EO = 1.8 meV 1121 we find q = 19.2/(No4). The basic 
assumptions of the present theory, i.e. (i) the interaction of the electron with one ion is small 
and (ii) there is a large number of ions in the electronic orbit, imply ( N O ~ / Z E O ( N O U ~ ) ) *  << 1 
and 8irx(Noai) >> 1. The maximum value of the coupling constant compatible with these 
conditions is qmar = 0.16 (the localization radius ae N 20 A). It is seen from figures 1 and 
2 that this value of qmax corresponds to the case of intermediate coupling. 

For the electron bound on a shallow donor (Q = 40 A) we obtain q N 0.02. 
Correspondingly, the splitting between two lowest-lying excited states of the polaron, which 
are the coupled states of the electron spin and collective states of ions with one ion excited 
to the triplet (n = 2, j = $ and n = 1, j = ;, see figure I), is about 2 cm-l. Such a 
splitting can lead to the existence of two satellite lines in the Raman spectra, which are 
placed around the line with h A o  = EO corresponding to the excitation of a lone Fe ion. 
The possibility of experimental observation of optical transitions of the polaron from the 
ground to excited states is connected with the problem of preparation of high-quality Fe- 
based semimagnetic alloys. It follows also from the results of section 3 that the ratio of 
the polaron g-factor to the g-factor of a free electron for Zno.gsFeo.osSe is g,/g* = 0.93. 
This correction to the g-factor should be taken into account if the s-d exchange constant is 
determined from the spin splitting of donor-bound electrons. 

In conclusion, it is shown in this paper that in a cubic Fe-based DMS the exchange 
coupling of the spin of a donor-bound electron with a great number of Fe ions can be 
treated as a coupling of the spin with a three-dimensional harmonic oscillator. This makes 
it possible to calculate the energy spectrum of the BMP for arbitrary values of the coupling 
constant The polaron effect can lead to the existence of additional lines in the Raman 
spectra, which correspond to the transitions of the polaron from the ground state to excited 
states. It is shown also that the polaron effect results in a decrease of the giant spin splitting 
of the electron level: the g-factor of the BMP is smaller than the g-factor of a free electron. 
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Appendix 

It is convenient to solve the Schrodinger equation 

HI@) = EIO) 
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with Hamiltonian (IO) in  the representation of the coherent states. Namely, multiplying 
(AI) on Iq) = exp{q. a - q* . at]lO), where q = q1 + iqz and (0) is the vacuum state 
(a10) = 0). we obtain 

4 . (d(o/W - 47,. (d(o/dq) - (A21 

(ow = exP(;IPl2l(4I@). (A31 
The eigenfunction with the total angular momentum j and its projection on the z-axis J, = j 
(see the paragraph after (1 1)) can be written in the form 

qqP(4) = (E/&o)(o(q) 

m 

(The expressions for the states with J, # j can be found from (A4) by the rotation of the 
coordinate system.) Substitution of wave function (A4) into (A2) gives 

A u k - I  - B k U k  +.J?Ak+tuktl = o  (U-I  0) (A5) 
where coefficients Ak and Bk are given by (13). The trinomial recurrence relations for ux 
can be analysed in the same way as in the theory of the Mathieu functions. We introduce 
Fk = uk f U k - I ,  and obtain from (As) the expressions for them in the form of continued 
fractions 

Fk = A/(& - .J?Ak+i F k t i )  k 1,2,  . . . . (4 
The spectral equation is found from relation (A5) at k = 0 to be BO = J i jA tFl ,  which 
leads to the expression (12). The wave function is then written as 

where the constant uo should be found from the normalization condition. It can be shown 
that in the case j = 1. 2 ’  
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